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Midterm Examination in FYS3410  

10.03.2010 
 
Duration: 3 hours 
 
No in-advance prepared helping materials are allowed to be used during the examination. No 
books are allowed except standard reference books listing mathematical formulas if needed. 
Calculators are allowed. 
 
The present examination measures the level of understanding reached by students on 3 
fundamental topics of Solid State Physics as addressed in the lectures/seminars within 
FYS3410 and in accordance with the course syllabus based on selective chapters of Kittel’s 
book. All examination questions are organized within the following topics: 

1. Periodic lattice and x-ray diffraction 
2. Vibrations and phonons 
3. Free electron Fermi gas 

Each topic contains questions of different levels of complexity and a full answer to each topic 
provides 1/3 of a full score.  
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FYS3410 Topic 1: Crystalline lattice and x-ray diffraction 

 
1.1 Consider a family of planes in a cubic crystal in Fig.1. What are Miller indices of the planes? 

 
 
Fig.1. Three-dimensional lattice (dashed lines) with basis vectors 1a

r
, 2a
r

, 3a
r

 containing different families of 

planes. Vector 3a
r

is normal to the page plane and is directed toward the reader. The magnitude of all basis 

vectors is a . The origo is marked with a dark spot in all four panels. 

 
 
1.2 Make a drawing representing reciprocal lattice points corresponding to the families of 
planes in Fig.1 in the reciprocal space. In order to make the drawing more quantitative, note 

that the reciprocal lattice vector may be given as hkl

hkl

n
d

G
rr π2

= , where hkln
r

 is a normal to a 

hkl-plane and hkld is a distance between hkl-planes:  
 
 

1.3 Consider the reciprocal lattice vector G
r

corresponding to the family of (010) planes in the 

drawing produced when solving problem 1.2 and an x-ray wave having wavevector k
r
. Prove 

that diffraction is not taking place for any Gk < G
r

21  where Gk  is a projection of k
r
vector 

on G
r

 direction. Tip: develop Laue equation Gk
rr

=∆ to the form of GGGk
rrrr

•=•2 and draw 

the Bragg plane cutting vector G
r

. Generalize the argument to the rest of the nearest to origo 
reciprocal points and introduce the Brillouin zone concept on the same graph.  
 
 
1.4 A reflection from the (111) planes of a cubic crystal was observed at an angle θ = 11.2º 
using Cu Kα radiation (λ = 1.5418 Å). What is the length of the side of the unit cell? List and 
provide short clarifications on factors limiting the number of reciprocal lattice points observed 
in diffraction experiments. Remember Bragg law θλ sin2 hkldn =   

( )222 lkh

a
dhkl

++
=
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FYS3410 Topic 2: Vibrations and phonons 

 
2.1 Assume one atom of mass m  per primitive cell in a linear lattice of N atoms with a lattice 
parameter a and an elastic constant c.  Accounting for nearest neighbour interactions only, the 

dispersion law is given by 
2

sin
4 22 ka

m

c
=ω . Analyze and sketch the dispersion law in the first 

Brillouin zone. 
 
 
2.2 Apply periodic (Born – von Karman) boundary conditions for the lattice introduced in 
problem 2.1 and show that the density of modes (states) is given by 

22
0

12
)(

ωωπ
ω

−
⋅=

N
D where 

m

c42
0 =ω . Use the graph from the problem 2.1 for correlating 

k∆ obtained from Born – van Karman treatment of elastic waves and the actual ω∆  interval. 

Note the identity: 21)cos(arcsin xx −= . Make a sketch of the 
22

0

12
)(

ωωπ
ω

−
⋅=

N
D function 

and illustrate by drawing in the same graph how )(ωD would change having 2 atoms with 

different masses per primitive cell. 
    
 
 
2.3 What is the density of states Einstein used in his analysis of heat capacity? Correlate – 
qualitatively – the characteristic frequency used by Einstein ( Eω ) with the sketch of )(ωD  

produced when solving problem 2.2. Further, Einstein temperature can be determined as 

BEE kωh=Θ , where Bk  is a Boltzmann constant. Make a rough estimate of EΘ (order-of-

magnitude accuracy is acceptable). The velocity of sound (~ 3105× m/s) and a lattice parameter 

typical for common crystals, say cma 8103 −×= , may be applied when estimating EΘ .  Analyze 

the trends for EΘ  provided by changes in the mass of atoms and the strength of the elastic 

constant. It is known that at sufficiently low temperatures almost all phonons are in their ground 
states. What difference in phonon occupation a small rise in temperature going to make in terms 
of Einstein formalism? When answering the last question the magnitudes of Eωh  and TkB may 

be compared and considering the occupation probabilities may provide a basis for conclusions. 

seV ⋅×= −161058.6h     151061.8 −− ⋅×= KeVkB  

 
     

2.4 The thermal conductivity coefficient κ  is given by Λ= VC
3

1
κ , where VC is the heat capacity 

and Λ is the phonon mean free path. Consider temperature dependences for VC , Λ , and κ at 

low/high temperature limits and fill Table I. Make a plot illustrating temperature dependence of κ . 
 
Table I 

 
 
 
 
 

Λ

high T

low T

κCV Λ

high T

low T

κCV
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FYS3410 Topic 3: Free Electron Fermi gas 

 
3.1 The free electron Fermi gas (FEFG) is described in terms of an independent electron 
orbital model, where the density of orbital’s (electron states) is derived solving a free particle 

Schrödinger equation )()(
2 2

2

2

2

2
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−  for wavefunction in a form of 

travelling plane wave )exp()( rkir
k

rrr
r ⋅=ψ  applying periodic (Born – von Karman) boundary 

conditions  in 3 dimentions (e.g. in x-direction ),,(),,( zyxzyLx ψψ =+ where L is a period). 

Assuming N to be a number of free electrons in a system in a ground state derive expressions 
for: the Fermi energy ( Fε ), the magnitude of the wavevector at the Fermi surface ( Fk ), and 

the density of states ( )(εD ). If needed use the identity xixix sincos)exp( += when 

considering allowed values of k. Note, m is a rest mass of an electron.  
 
 
 
3.2 Sketch the density of states, )(εD , for FEFG in the ground state obtained when solving 

problem 3.1. Account for the Fermi-Dirac distribution of electrons  

1exp

1
),,(

+

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=
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B

µε
µε  and make a modification in your graph, showing how the 

electron density of states changes with increasing temperature. How do you understand the 
quantity µ  which a chemical potential? For example, what is the chemical potential at 

0=T ? 
 
 
 
3.3 Classical statistical mechanics predicts that a free particle should have a heat capacity of 

Bk
2

3
 where Bk  is a Boltzmann constant. If N atoms each give one valence electron to the 

electron gas, as considered in problems 3.1 and 3.2, then the electronic contribution to the 

heat capacity should be NkB
2

3
, just as for atoms in a monoatomic gas. Calculate NkB

2

3
 for a 

mole to use as a reference. On the other hand experiments usually tell that the actual 

electronic contribution to the heat capacity is in the order of 0.01 of the classical NkB
2

3
 

value. Use the graph obtained when solving problem 3.2 and make an estimate of total 
electronic thermal kinetic energy and the corresponding heat capacity accessible for FEFG. 
Importantly, avoid the complicated integration of the ),,()( TfD µεε ⋅ product – make a 

motivated estimate! Using this estimate, calculate, at room temperature KT 300= , the 
electronic heat capacity in potassium characterized with an electron concentration of 

322104.1 −× cm . Note, it is convenient to introduce the quantity BFF kT /ε= called Fermi 

temperature.  

seV ⋅×= −161058.6h    151061.8 −− ⋅×= KeVkB  Kgm 31101.9 −×=  
1231002.6 −×= moleNA  JeV 19106.11 −×=  


